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Abstract Two types of optimization of thin-walled cylindrical shells loaded by lateral pressure 
are analyzed in this paper, with arbitrary axisymmetric boundary conditions and the volume being 
constant. The first is to find the optimal thickness to minimize the maximum deflection of a 
cylindrical shell. Here expressions of the objective function are obtained by the stepped reduction 
method. The optimal designs are reduced to nonlinear programming problems with an equality 
constraint. In minimizing the maximum deflection, the position of the maximum deflection from 
a previous iteration is used as the next one. The second is to find the optimal thickness to 
maximize the buckling pressure of shell. A buckling criterion of a shell is derived on the basis of 
an energy principle. An optimization criterion is formulated as the maximum of the buckling 
pressure. Moreover the space of allowable solutions is defined. This procedure converges quickly 
and numerical results show the effectiveness of the method. Several examples are provided to 
illustrate the methods. 
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1 Introduction 

Shell structures have been widely used in spaceflight and aviation, vessel, and large storage 
structures, etc. Optimal designs with respect to thin shell structures are important in both theory 
and application. Many techniques have been used for optimal design of shells. Often, the work 
addresses optimal design on weight of shell structures under various load and constraint 
conditions. However few works deal with dual problems. Gajewski and Zyczkowski published 
their survey paper on optimal structural design under stability constraints in 1988[1]. Hyman 
presented an optimum design for the instability of cylindrical shells under lateral pressure in 
1971[2]. Rotter stated the new European standard and current research needs on shell structures in 
1998[3]. Chapelle investigated fundamental considerations for the finite element analysis of shell 
structures [4] while Araar studied buckling of cylindrical shells under external pressure for a new 
shape of self-stiffened shell[5]. Adali did the minimum sensitivity design of laminated shells under 
axial load and external pressure[6]. Sakamoto did his investigation of a practical method of 
structural optimization by genetic algorithms[7].  Optimal sizes of a ground-based horizontal 
cylindrical tank under strength and stability constraints were investigated by Magnucki[8] and here 
are offered related works such as [9~13]. 

It is important to study the rational form of a shell to resist deformation. First, an effective 
way of optimal design for a thin cylindrical elastic shell is presented, which can determine the 
thickness functions that cause the minimax deflection or minimum compliance of the shell, under 
the conditions that the volume is constant and the middle surface shape is defined. In these 
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optimal problems, the explicit formulations of the objective function cannot be determined by 
traditional methods that lead to much computational difficulties. The deflection solution of 
cylindrical shells with variable thickness can be given by the stepped reduction method; further 
explicit expressions of the objective function can be obtained. The expressions are suitable for the 
arbitrary axisymmetric boundary conditions and radial compression. The optimal design of a 
cylindrical shell is reduced to a nonlinear programming problem with an equality constraint. 

Another method for optimal design of a thin cylindrical shell is proposed, which can 
determine the thickness functions that cause the maximum buckling load, under the condition of 
the volume being constant. By use of an energy principle the bifurcation buckling of the 
cylindrical shell subjected to lateral uniform pressure is analyzed. The necessary condition of the 
shell system being in a stable state is that the second variation of the total potential energy equals 
zero when it reaches a disturbed bifurcation buckling state from a stable equilibrium state. The 
solution for buckling pressure of the shell is transferred to a generalized eigenvalue equation. The 
buckling pressure is expected to be the maximum and then the optimal design of the shell is 
reduced to a nonlinear programming problem with constraints of the volume being constant. 

2 Governing Equation and the Solution 
2.1 Deflection of the cylindrical shell 

Consider the thin cylindrical elastic shell shown in Fig. 1, with the axisymmetric variable 
thickness , length , radius , elastic constants ( )h x l r ,E ν , and arbitrary axisymmetric radial 
compression . Divide the shell into  segments. Let each shell segment be short enough so 
that it can be considered as having uniform thickness and being subjected to a uniform lateral 
pressure. Suppose the i-th segment has the length

(P x) n

1il n= , thickness , lateral pressure , local 
variable

ih iP

ix , i0 ix l≤≤ (lower section of the segment 0ix =  and the upper section i ix l= ). Then 
the differential equation for the radial deflection of the i-th shell segment is[14] iw
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Fig. 1 Cylindrical shell with variable thickness 

where (3 12 1i iD Eh 2ν= −  is the radial stiffness and ( ) ( )223 1iK ν= − irh . The solution of eqn 
(1) can be written by the stepped reduction method as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1 2 3 40 0 0 0i i i i i i i i i i i i i i i iw x w F x w F x M F x Q F x F x′= + + + + )5     (2) 

where , , and  are the deflection, slope, bending moment and shear 
force respectively at the point , and 
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where 4 4i iEh r Dλ = 2
i . For convenience, the following dimensionless variables are introduced 
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where denotes the thickness of a uniform shell with given volume . Then eqn (2) can be 

written 

0h 0V

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 40 0 0 0i i i i i i i i i i i i i i i iw x w f x w f x M f x Q f x f x′= + + + + 5         (4) 

where the quantities ( ) ( ) ( )0 ,  0 ,  0i i iw w M′  and ( )0iQ denote dimensionless deflection, slope, 
bending, moment, and shear force respectively at 0ix = . The functions ( )ki if x are the 
corresponding dimensionless functions of ( ) ,  ( 1,2,3,4,5)ki iF x k = . Thus ( )i iw x  is an explicit 
formulation of ix . Let 

( ) ( ) ( ) ( ) ( ), , ,
T

i i i i i i i i i iS x w x w x M x Q x′⎡ ⎤= ⎣ ⎦                    (5) 

According to the relations of deflection, slope, bending moment and shear force, we have 

( ) ( ) ( ) ( )0    ( 1, 2,i i i i i i iS x T x S U x i n= + = L, )                   (6) 

where ( )i iT x and ( )i iU x denote a matrix and a 4 4× 4 1×  matrix respectively which consist of 

( ) ,  ( 1, 2,3, 4,5)ki if x k = and their derivatives. Continuity conditions at the junction of two 
neighbouring segments must be satisfied, so 

( ) ( )1 10    ( 2,3,i i iS S l i− −= = L, )n                             (7) 

Thus, we have 
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     (8) 

Then ( )i iT x  are the explicit formulation of .,i ix h  When ni =  and n nx l= , eqn (8) will 
give expressions for ,  ,  n nw w m′ n and nq . If the boundary conditions of the shell are given, the 
explicit expressions of the deflection, slope, bending moment and shear force at any point of the 
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shell can be obtained from eqn (8). 

2.2 Buckling of cylindrical shell with variable thickness 

Consider the same thin elastic cylindrical shell shown in Fig.1, but under uniform lateral 
pressure P . Divide the shell into  elements along the n x  direction. 

To study the stability of the cylindrical shell under lateral pressure, suppose that it is in a 
stable equilibrium state e , and is then given a disturbance to another state f . Let the 
displacement field in state f  be 

f e j= +V V V                                   (9) 
where  is the displacement field in state , and  is the disturbing displacement field 
from state  to 

eV e jV
e f . The displacement can be expressed as linear functions of a shell element on 

the generalized joints[13]. 
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where denote the generalized joint displacements in state  
and the disturbing procedure respectively, 

( ) ( ) (, , , , , , , 1, 2e e e j j j j
i i i i i i iu w u v w iθ θ = ) e

j is circumferential integral wave number, ( )xiA , 
and ( )3,4 ( )i=1,2, ( ),  i=1,2iB x  are polynomials. 

According to the relation between strain and displacement from Donnell theory, by 
substitution from the displacement field ( ), ,e j j e ju u v w w+ +  into the disturbing state f , the 
strain and curvature change in state f  can be denoted 

( ) ( )

( )

1 2

1

f e

f e

ε ε ε ε

χ χ χ

⎫= + + ⎪
⎬

= + ⎪⎭
                            (11) 

where ,  are strain and curvature change respectively in state , eε eχ e ( )1ε , ( )1χ  and ( )2ε  are 
linear and quadratic terms respectively with . The strain energy of the cylindrical shell 
in state

jjj wvu ,,
f  is denoted 

( ) ( ) ( )( )1 2 30f eU U U U U= + + +                        (12) 

where  is strain energy in state , eU e ( ) ( )1 2,U U  are linear and quadratic terms respectively 
with  jwu ,, .jj v

Consider a virtual displacement in state f . From the principle of virtual work 
( ) ( ) d dfU r xδ δ θ= ⋅∫∫ P V                           (13) 

This can be rewritten as 
( ) 0f fUδ Ω+ =                                (14) 

where fΩ  is the external force potential energy in state f . Retaining the first-order and 
second-order terms and neglecting higher order terms, the following formula is derived from eqn 
(14) 

( ) ( ) ( ) ( )( )1 1 2 2 0e eU U Uδ Ω Ω Ω+ + + + + =                    (15) 
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where ( ) ( )1Ω Ω+ 2  is the increment of external force potential energy from state e  to f . 
Because state  is an equilibrium state, the following equilibrium equation is obtained from the 
principle of minimum potential energy 

e

( ) 0e eUδ Ω+ =                               (16) 

Meanwhile state f  is also an equilibrium state. So the first-order variation of total potential 
energy in state f  equals zero 

( ) ( )( )1 1 0Uδ Ω+ =                             (17) 

From eqn (15),(16) and (17) 
 ( ) ( )( )2 2 0Uδ Ω+ =                            (18) 

eqn (18) shows that the second order variation of total potential energy from state  toe f  is 
zero. When the criterion is satisfied, unique solution of the disturbing generalized joint 
displacement will not exist. Then bifurcation instability appears. 

In the disturbing procedure from state  to e f , the second-order term for the external force 
work is 

( ) ( )2 2(2) d d
2

j j j j
j j j j j jP v u w ww w rw v v ru x

x x
Ω θ

θ θ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫∫     (19) 

According to the continuity condition at the joints of neighboring shell elements, eqn (16) 
becomes 

{ } { }e e eK q Q⎡ ⎤ =⎣ ⎦                             (20) 

where  is rigidity matrix, , }{  are the generalized joint displacement and force 
respectively. The equilibrium displacement  can be derived from eqn (20) under appropriate 
boundary conditions. A matrix expression of the disturbing generalized joint displacement is 
obtained by analyzing terms of the criterion eqn (18) 

][ eK }{ eq eQ
{ }eq

{ }{ } { }0j g jK P K q⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦ =                          (21) 

where  and  are rigidity matrix and increment rigidity matrix with][ jK ][ gK j circumferential 
wave number.  is the disturbing generalized joint displacement. Eqn (21) is a generalized 
eigen equation derived by the stability criterion, from which the buckling load can be got. 

}j{q

For convenience of numerical computation, the following dimensionless variables are 
introduced 

{ } { }
( )

33
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0 2
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,   ,   ,   ,   ,   ,   ,   .
12 1

i i i i
i i i i

ql h x w Ehr rr l h x w q P D
l l h l l l D

P
ν
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where  is the average thickness of a shell with the given volume. Then dimensionless eqn (20) 
and (21) are 

0h

{ } { }e e eK q Q⎡ ⎤ =⎣ ⎦                            (22) 

{ }{ } { }0j g jK P K q⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦ =                       (23) 

where ][ eK  and }{ eQ  are the dimensionless global rigidity matrix and the generalized joint 
force of eqn (22) respectively. ][ jK  and ][ gK  are the dimensionless global rigidity matrix and 
the increment rigidity matrix of eqn (23) respectively. 
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The generalized joint displacement }{ eq  can be obtained from eqn (22) under appropriate 
boundary conditions, then the minimum eigenvalue of eqn (23) can be obtained by using the 
inverse iteration method. Here, the buckling pressure is the minimum eigenvalue for various 
circumferential wave number j  

( ) ( ){ },   1, 2, ,10cr crp Min p j j= = L                     (24) 

3 Two Types of Optimal Design 

3.1 Optimal design on minimax deflection 

  The following procedure is proposed to determine the optimal design. Determine the thickness 
function  which minimizes the maximal ( )h x ( ),w h x  subject to the constraint of its volume 

being constant 0( ) 2h x dx V rπ=∫ . As previously stated, after dividing the shell into n  shell 
segments and setting a dimensionless transformation, the optimal design problem can be defined 
as follows. Determine 1+n  variables 1 2 , , , ),nh h h xL( ,   

( )1 2

min

Minimize  max , , , , ,

subject to   1,    ( )  ( 1, 2, , )
n

i i i

w h h h x

h l h h i n

⎫⎪
⎬

= ≥ = ⎪⎭∑
L

L
             (25)          

where minh  is the dimensionless given minimal thickness. 
If the boundary conditions and ( 1,2, , )ih i n= L  are given, the solution w  can be obtained by 

eqn (8). To find the point of the maximal deflection, let the length of each segment be small 
enough so that only one stationary point of deflection exists at each segment, if it exists. The 
following procedure is proposed to determine the stationary point of deflection. First, determine 
all segments  which satisfy}{ j 1 0j jw w −⋅ ≤ . By means of the average section method, the 
stationary points of deflection at these elements will be obtained. Denote these points by{ }jx . 
Second, compare the deflections corresponding to points{ }jx , and find the point of maximal 
deflection for the whole shell. Denote the point as mx , and the deflection as mw , 

1 2( , , ,h L , )m m n mw w h h x= , where  indicates the point m mx lying in the th segment. Thus 
the optimization objective is to determine 

m −

1 2, , , ,nh h hL  to minimize 1 2( , ,m h , , )n mw h h xL . Model 
(25) is a nonlinear programming problem with an equality constraint, and the explicit formulation 
of the objective function with respect to design variables was obtained. Therefore, the derivatives 
of the objective function with respect to design variables can be easily obtained. It will be solved 
by using various multidimensional gradient methods. For example, if the reduced gradient 
method is used and nh  is taken as the base variable, the reduced gradient can be easily obtained 
as follows.  

( ) ( )1 1 1 1

1 1

, , , , , ,
, ,m n m m n

n

w h h x w h h x
h h

− −

−

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎣ ⎦

L L
L m . 

As a nonlinear programming with an equality constraint, eqn (25) can be solved by the 
simplified projection gradient method. Because the gradient vector is obtained easily, the 
proposed method with high calculation accuracy and fast convergence is superior to most 
traditional methods. 
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3.2 Optimal design on maximizing buckling pressure 

The optimal design of a cylindrical shell on stability can be stated as follows. Dividing the 
shell into  shell segments and setting a dimensionless transformation, and keeping the shell 
volume constant, find the optimal thickness 

n
( ), 1, 2, ,ih i n= L  to maximize its buckling pressure. 

( )
( ) ( )

1 2

max min

minimize   , , ,

subject to  1,   ,   1, 2, ,

cr n

i i i

F P h h h

h l h h h i n

⎫= − ⎪
⎬

= ≥ ≥ = ⎪⎭∑
L

L
          (26) 

where max min,h h  are the given dimensionless maximum and minimum thickness respectively. The 
following procedure is proposed to determine the optimal design. The tabu search algorithm is 
used for pilot calculations for a representative material. The results show high calculation 
accuracy but slow convergence for the tabu search algorithm. 

Being a nonlinear programming with an equality constraint, (26) can be solved by the 
simplified projection gradient method with high calculation accuracy and fast convergence. 

4 Numerical Results and Discussion 

4.1 Numerical Results on minimax deflection 
In this section some numerical results for the two types of optimal design obtained using the 

stepped reduction method and suitable optimal techniques are illustrated. Several typical 
examples are provided. In the following numerical examples, let initial parameters:    

(0) 1,  ( 1, 2, , )ih i= = L

w

n ， 0.3ν = ， 0 0.01h r = ， 2.0l r = . λ denotes the ratio of maximal 
deflection of the optimal shell and maximal deflection of the uniform shell with the same volume. 
In Fig.2 the solid lines represent the thickness distribution and deflection curves of the optimal 
shell respectively. Meanwhile the dotted lines show the corresponding thickness distribution and 
deflection curves of the uniform shell with the same volume, respectively. (a) is both ends built-in, 
uniform load, 0.760λ = ; (b) is both ends simply supported, uniform load, 0.798λ = ; (c) is 
lower end built-in, upper end free, and ( ) ( )1 ,  0.619P x P x l λ= − = . 

( b )w ( c )w  ( a )
Fig. 2 Curves of optimal thickness and deflection under various boundary conditions 

4.2 Numerical Results on maximizing buckling pressure 
It is effective to calculate the buckling pressure of a cylindrical shell with variable thickness 

by using the proposed method. Numerical results for uniform thickness show that the results are 
close in comparison with that by Donnell theory. Some numerical results for various boundary 
conditions are obtained. Here the optimal results for two typical boundary conditions are 
illustrated, with various ratios of radius to thickness, and length to radius. The boundary 
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conditions are 

C1 boundary: 0wu v w
x

∂
= = = =

∂
 

S3 boundary:  0x xN v w M= = = =

Let the initial parameters (0) 1,  ( 1, 2, , )ih i= = L n ， 0.3ν = ， 0 0.01h r = . , and 160n =
*

cr crP Pλ = , where crP and *
crP are the buckling pressure of the optimal shell and the uniform shell 

with the same volume, respectively. Results are shown in Figures 3 and 4.  

Fig.3 Curves of optimal thickness and buckling pressure under C1 boundary conditions 
(a) *2,  69.61,  121.35,  1.74cr crl r P P λ= = = = . 

 (b) *10,  12.96,  27.74,  2.14cr crl r P P λ= = = = . 
 (c) buckling pressure as a function of l r . 

Fig.4 Curves of optimal thickness and buckling pressure under S3 boundary conditions 
(a) *2,  49.76,  90.77,  1.82cr crl r P P λ= = = = . 

(a) (b) (c)
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 (b) *10,  8.03,  21.44,  2.67cr crl r P P λ= = = = . 

 (c) buckling pressure as a function of l r . 

5 Conclusions 

In this paper we have investigated two types of optimization of cylindrical shells. First, the 
stepped reduction method has been used to calculate the deflection of a cylindrical shell; further 
explicit expressions of the objective function can be derived and analyzed by use of the iteration 
method. The expressions are suitable for arbitrary axisymmetric boundary conditions and radial 
compression. The optimal design of a cylindrical shell is reduced to a nonlinear programming 
problem with an equality constraint. Secondly, an effective method to maximize the buckling 
 8
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pressure of a cylindrical shell with variable thickness and subjected to lateral uniform pressure is 
proposed. The bifurcation buckling of the cylindrical shell has been derived by use of an energy 
principle. If it reaches a disturbing bifurcation buckling state from a stable equilibrium state, the 
necessary condition of the cylindrical shell being in a stable state is that the second variation of 
total potential energy equals zero. To solve, the buckling pressure of the cylindrical shell is 
reduced to a generalized eigenvalue equation. Some numerical calculations are carried out to 
show the usefulness of the present method. The numerical examples demonstrate the accuracy 
and efficiency of the proposed method. 
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